spark.nn.neurons#
Submodules#
Classes#
Abstract Neuron model. |
|
Abstract Neuron model configuration class. |
|
Generic Neuron model output spec. |
|
Leaky Integrate and Fire neuronal model. |
|
LIFNeuron configuration class. |
|
Leaky integrate and fire neuronal model. |
|
ALIFNeuron configuration class. |
Package Contents#
- class spark.nn.neurons.Neuron(config=None, **kwargs)[source]#
Bases:
spark.core.module.SparkModule,abc.ABC,Generic[ConfigT]Abstract Neuron model.
This is a convenience class used to synchronize data more easily. Can be thought as the equivalent of Sequential in standard ML frameworks.
- Parameters:
config (ConfigT | None)
- abstractmethod __call__(in_spikes)[source]#
Execution method.
- Parameters:
in_spikes (spark.core.payloads.SpikeArray)
- Return type:
- class spark.nn.neurons.NeuronConfig(**kwargs)[source]#
Bases:
spark.core.config.SparkConfigAbstract Neuron model configuration class.
- class spark.nn.neurons.NeuronOutput[source]#
Bases:
TypedDictGeneric Neuron model output spec.
Initialize self. See help(type(self)) for accurate signature.
- out_spikes: spark.core.payloads.SpikeArray[source]#
- class spark.nn.neurons.LIFNeuron(config=None, **kwargs)[source]#
Bases:
spark.nn.neurons.NeuronLeaky Integrate and Fire neuronal model.
- Parameters:
config (LIFNeuronConfig | None)
- config: LIFNeuronConfig[source]#
- build(input_specs)[source]#
Build method.
- Parameters:
input_specs (dict[str, spark.core.specs.InputSpec])
- __call__(in_spikes)[source]#
Update neuron’s states and compute spikes.
- Parameters:
in_spikes (spark.core.payloads.SpikeArray)
- Return type:
- class spark.nn.neurons.LIFNeuronConfig(**kwargs)[source]#
Bases:
spark.nn.neurons.NeuronConfigLIFNeuron configuration class.
- synapses_config: spark.nn.components.synapses.base.SynanpsesConfig[source]#
- delays_config: spark.nn.components.delays.base.DelaysConfig[source]#
- learning_rule_config: spark.nn.components.learning_rules.base.LearningRuleConfig[source]#
- class spark.nn.neurons.ALIFNeuron(config=None, **kwargs)[source]#
Bases:
spark.nn.neurons.NeuronLeaky integrate and fire neuronal model.
- Parameters:
config (ALIFNeuronConfig | None)
- config: ALIFNeuronConfig[source]#
- build(input_specs)[source]#
Build method.
- Parameters:
input_specs (dict[str, spark.core.specs.InputSpec])
- __call__(in_spikes)[source]#
Update neuron’s states and compute spikes.
- Parameters:
in_spikes (spark.core.payloads.SpikeArray)
- Return type:
- class spark.nn.neurons.ALIFNeuronConfig(**kwargs)[source]#
Bases:
spark.nn.neurons.NeuronConfigALIFNeuron configuration class.
- synapses_config: spark.nn.components.synapses.base.SynanpsesConfig[source]#
- delays_config: spark.nn.components.delays.base.DelaysConfig[source]#
- learning_rule_config: spark.nn.components.learning_rules.base.LearningRuleConfig[source]#